3.516 \(\int \cos ^{\frac{7}{2}}(c+d x) \sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=175 \[ \frac{2 a (6 A+7 B) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{35 d \sqrt{a \sec (c+d x)+a}}+\frac{8 a (6 A+7 B) \sin (c+d x) \sqrt{\cos (c+d x)}}{105 d \sqrt{a \sec (c+d x)+a}}+\frac{16 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 a A \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(16*a*(6*A + 7*B)*Sin[c + d*x])/(105*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (8*a*(6*A + 7*B)*Sqrt[Co
s[c + d*x]]*Sin[c + d*x])/(105*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(6*A + 7*B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])
/(35*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*A*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.403348, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.114, Rules used = {2955, 4015, 3805, 3804} \[ \frac{2 a (6 A+7 B) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{35 d \sqrt{a \sec (c+d x)+a}}+\frac{8 a (6 A+7 B) \sin (c+d x) \sqrt{\cos (c+d x)}}{105 d \sqrt{a \sec (c+d x)+a}}+\frac{16 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 a A \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(16*a*(6*A + 7*B)*Sin[c + d*x])/(105*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (8*a*(6*A + 7*B)*Sqrt[Co
s[c + d*x]]*Sin[c + d*x])/(105*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(6*A + 7*B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])
/(35*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*A*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Sec[c + d*x]])

Rule 2955

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Csc[e + f*x])^m*(
c + d*Csc[e + f*x])^n)/(g*Csc[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 4015

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(A*b^2*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(a*f*n*Sqrt[a + b*Csc[e + f*x]]), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 3805

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(a*Cot[
e + f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[(a*(2*n + 1))/(2*b*d*n), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rubi steps

\begin{align*} \int \cos ^{\frac{7}{2}}(c+d x) \sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\frac{2 a A \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{7} \left ((6 A+7 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a (6 A+7 B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a A \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{35} \left (4 (6 A+7 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{8 a (6 A+7 B) \sqrt{\cos (c+d x)} \sin (c+d x)}{105 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a (6 A+7 B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a A \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{105} \left (8 (6 A+7 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{16 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{8 a (6 A+7 B) \sqrt{\cos (c+d x)} \sin (c+d x)}{105 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a (6 A+7 B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a A \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.339418, size = 96, normalized size = 0.55 \[ \frac{\sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{a (\sec (c+d x)+1)} ((141 A+112 B) \cos (c+d x)+6 (6 A+7 B) \cos (2 (c+d x))+15 A \cos (3 (c+d x))+228 A+266 B)}{210 d (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(Sqrt[Cos[c + d*x]]*(228*A + 266*B + (141*A + 112*B)*Cos[c + d*x] + 6*(6*A + 7*B)*Cos[2*(c + d*x)] + 15*A*Cos[
3*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Sin[c + d*x])/(210*d*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 0.276, size = 108, normalized size = 0.6 \begin{align*} -{\frac{ \left ( -2+2\,\cos \left ( dx+c \right ) \right ) \left ( 15\,A \left ( \cos \left ( dx+c \right ) \right ) ^{3}+18\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+21\,B \left ( \cos \left ( dx+c \right ) \right ) ^{2}+24\,A\cos \left ( dx+c \right ) +28\,B\cos \left ( dx+c \right ) +48\,A+56\,B \right ) }{105\,d\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}\sqrt{\cos \left ( dx+c \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(7/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x)

[Out]

-2/105/d*(-1+cos(d*x+c))*(15*A*cos(d*x+c)^3+18*A*cos(d*x+c)^2+21*B*cos(d*x+c)^2+24*A*cos(d*x+c)+28*B*cos(d*x+c
)+48*A+56*B)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.02598, size = 564, normalized size = 3.22 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/840*(3*sqrt(2)*(105*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 35*c
os(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 7*cos(2/7*arctan2(sin(7/2*d
*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 105*cos(7/2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*
x + 7/2*c), cos(7/2*d*x + 7/2*c))) - 35*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x
 + 7/2*c))) - 7*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 10*sin(7/2
*d*x + 7/2*c) + 7*sin(5/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 35*sin(3/7*arctan2(sin(7/2*d*
x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 105*sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*A*sqrt(
a) - 14*sqrt(2)*(5*(6*sin(2*d*x + 2*c) + sin(d*x + c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) - (30*cos(
2*d*x + 2*c) + 5*cos(d*x + c) + 6)*sin(5/2*arctan2(sin(d*x + c), cos(d*x + c))) - 5*sin(3/2*arctan2(sin(d*x +
c), cos(d*x + c))) - 30*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*B*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]  time = 0.480417, size = 265, normalized size = 1.51 \begin{align*} \frac{2 \,{\left (15 \, A \cos \left (d x + c\right )^{3} + 3 \,{\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{2} + 4 \,{\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right ) + 48 \, A + 56 \, B\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/105*(15*A*cos(d*x + c)^3 + 3*(6*A + 7*B)*cos(d*x + c)^2 + 4*(6*A + 7*B)*cos(d*x + c) + 48*A + 56*B)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(7/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)*cos(d*x + c)^(7/2), x)